EE-208-F: Fundamentals of Electromagnetics

LECTURE 2

Topics Covered

- Vector calculus
- Charge
- Electromagnetics fundamentals
- Scalar fields
- Vector fields

What is a charge q?

What is CHARGE (q): A fundamental conserved property of some subatomic particles (electron, proton, neutron).

It exists because of an excess or a deficiency of electrons.

Electrical charge exists in discrete quantities, which are integral multiples of the charge on an electron -e,

 $e = 1.602 \times 10^{-19}$ (C) 6.24 x 10¹⁸ electrons carry a charge of 1 coulomb

On the macroscopic level, charge is assumed to be "continuous"

Charge is conserved !

Fundamental Laws of Electromagnetics

Steps in Studying Electromagnetics

Define basic quantities (e.g., E-field, H-field)

Define the rules of operation (mathematics) of these quantities (e.g., Vector Algebra, PDEs)

Postulate fundamental laws

Fundamental Relationships $c_0 = \sqrt{\mu_0 \varepsilon_0}$ $\mathbf{D} = \varepsilon_0 \mathbf{E}$ $\mathbf{B} = \mu_0 \mathbf{H}$ **Constitutive Relations**

Scalar and Vector Fields

- A scalar field is a function that gives us a single value of some variable for every point in space.
 - Examples: voltage, current, energy, temperature
- A vector is a quantity which has both a magnitude and a direction in space.
 - Examples: velocity, momentum, acceleration and force

Example of a Scalar Field

Temperature: Every location has associated value (number with units)

Nighttime temperature map for Mars

Scalar Fields

Current Temperatures

e.g. Temperature: Every location has associated value (number with units)

- Colors represent surface temperature
- Contour lines show constant temperatures

Vector Fields

Vector (magnitude, direction) at every point in space

Example: Velocity vector field - jet stream

Vector Fields Explained

Vector has both magnitude and direction in space.

Velocity vector

Examples of Vector Fields

Fluid flow field (Fluid is represented by a finite number of particles.)

Fluid flow associated with a source (or "faucet")

The vector velocities of the particles are all directed outwards from the center of the cone A circulating flow of particles

The vector velocities of the particles as seen from above are directed counterclockwise ₂₇about the center of the cone

Examples of Vector Fields

Gravitational Field

The gravitational field describes the interaction between a massive object and the Earth.

Examples of Vector Fields

Magnetic Field of a bar magnet

The needle aligns itself along the direction of magnetic field.

The Earth's magnetic field behaves as if there were a bar magnet in it.